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Some Examples
o Time switching Electronics: Alarm Clock

o before alarm time

Mode 1: alarm is closed
(before and after
alarm time)

Mode 2: alarm is open
(at alarm time)
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Background and models

Background

@ In practical systems, there are often abrupt changes (such
as the disorder of branches and internal connections),
parameter transfer and the measurement of input and
output of the system at different times. The existence of
random errors makes a large number of physical systems
have variable structure and easy to change randomly.

@ System random failure and repair recovery, subsystem
coupling part change, delay or packet loss of different
channels in network control.

@ The sudden change of economic system parameters, the
failure of components and sensors, and the sudden
change of external environment.



Background and models

Models

@ We are concerned with the following stochastic switched
systems

X(t) = frp(x(1)), t =2 0, (1)

where
(i) o(t) is a Markov chain;
(i) o(t) is a semi-Markov chain.

@ Markov chain: the dwell time follows exponential
distribution;

@ Semi-Markov chain: the dwell time does not follow
exponential distribution;



Existing results

Existing results

e Systems with Markov switching

For systems with stochastic switching signals, many important
results have been presented for systems with Markov switching,
we can refer to the following books and the references in them.

@ X. Mao, C. Yuan, Stochastic differential equations with
Markov switching, Imperial College Press, 2006.

@ G. Yin, C. Zhu, Hybrid switching diffusions: properties and
applications, Stochastic Modelling and Applied Probability,
Springer, 63,2010.

@ E. K. Boukas, Stochastic switching systems: analysis and
design, Birkhduser Boston, 2006.

@ Oswaldo L. V. Costa, Marcelo D. Fragoso, Marcos G.
Todorov, Continuous-time Markov jump linear systems,
Probability and Its Applications, Springer, 2013.



Existing results

Linear systems with Markov switching

@ For linear systems with Markov switching
x(t) = A(r(t))x(t),t = 0, @)

where {r(t), t > 0} be a right-continuous Markov chain on
a complete probability space (22, F, P) taking values in a
finite state space S = {1,2,--- , N} with generator

Q = (gj)nxn given by

. , jAt + o(At it i#)
P{r(t+At)=/|r(t)='}={ $”+ q,-,-At(+ o)(At) i 'ij ’
o(At)

where At > 0 and lima;0 =57~ = 0. Here, g; > 0 is the
transition rate from i to j if i # j while g = —>_;; gj.




Existing results

Linear systems with Markov switching

Theorem

System (2) is exponential mean square stability if and only if
there exists a set of symmetric and positive-definite matrices

P=(P(1),---,P(N)) > 0 such that the following LMIs are
feasible:

AT(IP(i) + P(NA(I) + Y qiP(j) < O,VieT.
jer

@ E. K. Boukas, Stochastic switching systems: analysis and
design, Birkhduser Boston, 2006.



Existing results

Nonlinear systems with Markov switching

@ For nonlinear systems with Markov switching

X(t) = fr(ny (x(1)). 3)

Let K..denotes the family of all continuous increasing convex
functions x : Ry — Ry such that x(0) = 0 while x(u) > 0 for
u>0andlim . k(U) = co.

Theorem

Consider System (3), let ¢ = maxicr |q;i| and q = max; jcr q; for
i,j € T. There exist differentiable functions V;, i € T, functions
k1, ko € Koo, @nd real numbers A < 0 and . > 1, such that

® (Hi) r1(|x]) < Vi(x) < ra(Ix]),
o (Hp) for V e ¢ and o(t) = i,i € T, 24X £(x) < AVi(x).




Existing results

@ (Hs) Vi(x) < 1 Vj(x),Vi,jeT,
A+

o (H4) n < q -
Then the system (3) with Markovian switching is globally
asymptotically stable almost surely.

@ D. Chatterjee, D. Liberzon, On stability of randomly
switched nonlinear systems, IEEE Transactions on
Automatic control, 52(12),2390 — 2394, 2007.

@ D. Chatterjee, D. Liberzon, Stabilizing randomly switched
systems, SIAM Journal on Control and Optimization,
49,2008 — 2031, 2011.



Existing results

Nonlinear stochastic systems with Markovian switching
@ For nonlinear stochastic systems with Markovian switching
dx(t) = F(x(t), t,r(t))at + g(x(1). t, r(D)dB().  (4)

Theorem

Letp > 2 and §;,i € T be constants. Assume that for all
(x,t, i) e R" xRy xT,

p

XT()f(x, 1)+ 2lg(x, £ )2 < Gilx2 i €T

If A= —diag (pB1,pP2, - ,PBN) iS @ nonsingular M-matrix,
System (4) is pth moment exponentially stable.

@ X. Mao, C. Yuan, Stochastic differential equations with
Markovian switching, Imperial College Press, 2006.



Existing results

Theorem

Assume that there exists a function V € C?' (R" x R, ;R.),
and constants p > 0,¢ > 0,«; € R, 8; > 0,i € ', such that for
all (x,t,i) e R" x Ry x T

clx|P < V(x,t), LV(x, ti)<aoV(xt),
[Vie(x, £, )g(x, £, )] > B;V3(x, ).

Then,

lim sup— log (|x (£, Xo)| Zw, (0.55; — «j)

t—o00

ler

@ F. Deng, Q. Luo, X. Mao, Stochastic stabilization of hybrid
differential equations, Automatica, 48, 2321-2328, 2012.



Existing results

There exist functions V € C?>(R" x S;R™), ay,ap € Ko, and
numbers ¢ > 1, \; € R, such that for every i,j € S,

ar([x(1)]) < V(x, 1) < aa(|x()]);

LV(x, i) < XNV(x,i);
V(x,i) < cV(x,j));

329

_ o (u =)y (1 — )0y
v e,
—p—ql(p=0) - qul(p>0) <0, (8)

wherep Yies, Tis Qu = max{q,,,/ € Sy,j € S}, and

9,, =max{0;,i € Sy} < T Then, (4) is stochastically
asymptotically stable in the large.

B. wang, Q. Zhu, Systems & Control Letters , 105(2017)55-61.



Existing results

Systems with semi-Markov switching

Method 1

¢ The distribution of the sojourn time F;(t) is required to obey
continuous distribution of phase (PH-distribution.)

e The infinitesimal generator of Z(t) given by
Q = (Qu, i, v € G) is as follows:

Qi k) (i k) = Tlgz_’i)k(i)’ (ihk)ea
I .
i konikn) = Txoras KO 2K (LK) € G
and (i,k") e G
koo = PiTair @y 174 (i, kD) e G
and (j,k¥) € G.
@ Z. Hou, J. Luo, P. Shi, S. K. Nguang, Stochastic Stability of Ito

Differential Equations With Semi-Markovian Jump Parameters,
IEEE Transactions on Automatic control, 51(8)(2006)1383-1387.




Existing results

Systems with semi-Markov switching

Method 2
@ It requires the transition rates A(h) = (g;i(h))nxn to
constrain within a finite interval, i.e., q; < g;(h) < gj.
@ Only semi-Markov jump linear systems are considered.
@ Noise disturbances are ignored.

@ J. Huang, Y. Shi, Stochastic stability and robust
stabilization of semi-Markov jump linear systems,
International Journal of Robust and Nonlinear Control,
23,2028 — 2043, 2013.

In summery, the above two methods have two disadvantages:

e The transition rates are required to be bounded;

e Questions on semi-Markov switching are really the same as
those on Markov switching.



Existing results

Two questions

Naturally, there are two questions as follows:

Question 1

@ How to deal with the stability of systems with semi-Markov
switching when the distribution of the sojourn time F(t) is
not required to obey PH-distribution?

Question 2

@ How to deal with the stability of systems with semi-Markov
switching when the transition rates are unbounded?



Definitions and properties of semi-Markov process

Definition of semi-Markov process

Let S={1,2,---, N} be afinite state space. A stochastic
process {r(t),t > 0} is called a semi-Markov process on the
probability space with finite state space S, if the following
conditions hold.
@ {r(t),t > 0} are right-continuous and have left-handed
limits with probability one with transition matrix
P = (pij)N><N-
@ Denote the k-th jump point of the process r(t) by Tk, k = 0,
1,2,---,wherefp=To< Ti<To< - < T <+
Tx T +o00, and the process r(t) possesses Markov property
ateach Ty, k=10,1,2,---.
© F(t) = P(Tiwr — Tie < tir(Ti) = i.1(Tes1) =J) =
Fi(t)(i,j € S,t > 0) does not depend on j and k.



Definitions and properties of semi-Markov process

Several notations

@ Let {N,(t),t > 0} be the number of switches of r(t) on the
interval (o, t].
Obviously, for any t > ty, k > 0, N.(t) = k is equivalent to
te [Tk, Tk+1),

@ Ty, — Tk is the k-th sojourn time.

@ Let 7; be the sojourn time in state / € S.



Definitions and properties of semi-Markov process

Properties of semi-Markov process

The structure of semi-Markov process {r(t),t > 0} can be
characterized by the following two notions:

@ The transition probability matrix

Prnxn = (Pi)nxn, Yisj € S, 9)

where pjj = P(r(Tx41) = jIr(Tk) = i) is the probability with
which the process makes a transition from state / to state j
attime Ty 1, kK > 0.

@ The set of distribution functions of sojourn times 7, i € S,

Fi(t) =P(r;i <t)
= P(Tks1 — T < tjr(Tx) = i), Yk >0, (10)

where F;(t) has continuous differentiable density f;(¢).



Definitions and properties of semi-Markov process

Probability distribution of semi-Markov process

For arbitrary t > 0, let h(t) :=t —sup{Tx: Tx < t,k > 0}. A
simple calculation shows that for any i,j € S,
P(r(ty=1i) = > P(r(t) =it € [Tn, Toi1))
n=0
= ...=P(r;>h)=1-Fj(h), (11)
and

P(r(t) =i, r(t+ At) =)

{ [Fi(h+ At) — Fi(h)lpj, i#J, (12)
1— Fi(h+ At), =]

where At > 0.



Definitions and properties of semi-Markov process

Generator matrix of semi-Markov process

Then, we have the transition rates
P(r(t+ At) = jir(t) =)

ai(h) = A“tTO At
i
1_71_-1_“7),0//» Vi#ieS, (13)
from state / to another state j(# i), and
qi(h):=— > gj(h), vieS. (14)
JESj#i

Thus, we get the generator matrix

A(h) == (qj(h))nxn, h >0, (15)

which governs the evolution of semi-Markov process

{r(t),t > 0}.



Stochastic differential equations with

Stochastic differential equations with semi-Markov switching

We consider the following stochastic differential equation with
semi-Markov switching:

dx(t) = f(x(t), r(t))dt + g(x(t), r(t))dB(t), (16)
x(fh) = X € Rn,f(to) =nres,

where {r(t),t > 0} is a semi-Markov process, {B(t),t > 0} is a
d-dimensional Brownian motion.

We assume that B(t) and r(t) are independent.

f(,-):R"x S+ R"and g(-,-) : R" x S s R™C,



Stochastic differential equations with

Existence-uniqueness condition of solution

@ Both f and g satisfy the local Lipschitz condition and the
linear growth condition.
Obviously, these conditions can ensure that system (16)
has a unique solution, and we denote it by x(t).

@ We also assume that f(0,/) = 0,9(0,/) =0 foreach i € S.
This means that system (16) admits a trivial solution
x(t,0) =0.



Stochastic differential equations with

Definition of stability

@ The ftrivial solution of system (16), or simply system (16), is
said to be stochastically stable if for every triple of
e€(0,1),p>0,and ty > 0, there exists a
d = (e, p, ty) > 0, such that

P(|x(t; to, X0, 0)| < p,forall t > t) >1—¢ (17)

for any (xo, i) € Bs x S.

@ The trivial solution of system (16) is said to be
stochastically asymptotically stable in the large if it is
stochastically stable and, moreover,

P(lim x(t;ty, X, i) = 0) = 1, (18)
t—o0

for any (ty, Xp, /) € Rt x R” x S.



Stochastic differential equations with

Assumption

In order to present our result, we need to assume that the
semi-Markov process r(t) satisfying the following conditions.

@ The sequence {Tx.1 — Tk, k > 0} is a collection of
independent random variables, with E(Ty1 — Tx) < oc.

@ The sequence {r(Tx),k > 0} is a discrete-time Markov
chain with transition probability matrix P = (pj)nxn-

@ The sequence {Tx.1 — Tk, k > 0} is independent of
{r(Tx),k >0} .



Our main results

Theorem Assume that there exist functions
V e C?(R" x S;RY), aq, ap € Koo, and numbers p > 1, )\; € R,

such that
aq([x(8)]) < V(x, i) < ax(|x(1)]), Vie S, (19)
LV(x,i) < \V(x,i), VieS, (20)
V(x,i) < uV(x,j), Vi,j€S, (21)
> uE(eNT)py <1, Vie S, (22)

jesS
then system (16) is stochastically asymptotically stable in the
large.

@ Wang Bao, Zhu Quanxin*, Stability analysis of
semi-Markov switched stochastic systems,
Automatica, 94 (2018)72-80.



@ The condition (19) is a fairly standard condition for
Lyapunov function, which ensures that for each i € S,
V(x, i) is positive definite and radially unbounded.

@ The condition (20) furnishes a quantitative estimate of the
degree of stability of each subsystem, the larger \; means
the large degree of instability of the i-th subsystems.

If \; < 0, the i-th subsystem is stochastically asymptotically
stable in the large.



@ The condition (21) is also a standard condition, under this
condition we can remove the linear growth condition.

@ The condition (22) indicates that the large degree of
instability and the larger sojourn time of unstable
subsystem can be compensated for by a smaller
probability of the switching process activating the
corresponding subsystem.

@ Other works require the transition rates A(h) = (q;(h))nxn
to constrain within a finite interval, but we remove it.



Proof of Theorem

| do not present the proof since it is complex and tedious.
Instead, | only mention some techniques as follows:

@ Tonelli’s theorem and the total probability formula.

@ The monotone convergence theorem and stochastic
Barbalat's lemma.

@ Stochastic analysis, conditional expectation and some
inequalities techniques, etc.

@ Two important lemmas.



Lemma 1

Assume that the following conditions hold.

LV(x, ) < \V(x,i), ViesS,
V(x,i) < uV(x,j), Vi,jeS.

Thenforany t > fyand k > 1,

E[V(x(8), () I(N:(t) = k)| Oy {r(T)) = i}]
< 1K V(x0, 10) E[€ k" TII(NL(t) = K)|r(Ti) = ik]
x E(e*™0 )N\ E(eMim), (23)

here we assume that I'I?:1- =1andje S /=12 --.

@ Wang Bao, Zhu Quanxin*, Stability analysis of
semi-Markov switched stochastic systems,
Automatica, 94 (2018)72-80.



Lemma 2

Assume that the following conditions hold.
LV(x, i) < \V(x,i), ViesS,
V(x,i) < uV(x,j), Vi,jeS.
Then forany t > f,

E[V(x(®), r(1)]

< V(x0, fo)[max E(em1<s v 1)][1 + pu(e*o™0)
e

E(e7)py)f 24
x> (maxpuy  E(e ] (24)
k=1 jeS

@ Wang Bao, Zhu Quanxin*, Stability analysis of
semi-Markov switched stochastic systems,
Automatica, 94 (2018)72-80.



Some comparisons

@ Markov process —-a special case of semi-Markov process

For each i € S, if the sojourn time 7; follows exponential
distribution with a positive parameter 6;, that is for x > 0,
P(r; < x) =1 — 7% then (13) and (14) imply that the
generator matrix A(h)nxn reduces to the constant matrix
N = (gj)nxn, and the semi-Markov process reduces to the
Markov process. By (13), we have

pi= L vi£ies, (25)
]
pi=1- Y pjVies. (26)

JeS,j#i



Thus, we get the one-step transition probability matrix

P = (pj)nxn (27)

of the embedded Markov chain {rx := r(Tx), k > 0} of Markov
process. Combining (25) and (26), for each i € S, we have

1qil = (1 — pi)o;, (28)

which implies that for each i € S, the sojourn time 7; follows

exponential distribution with parameter 1'5’—%‘” .



Markov switched stochastic system

Next, we consider the following Markov switched stochastic
system of the form

dx(t) = F(x(1), r(1))at + g(x(t), r(t))dB(1),  (29)
x(to) = Xo, r(fo) = ro,

where {r(t),t > 0} is a Markov process with generator Matrix
A = (gjj)NxN-



Corollary 1. ( Theorem 5.37 of Mao and Yuan (2006) )

Assume that there exist functions V € C?(R" x S;R*),
a1, a0 € Ko, and real numbers 8; < 0,/ € S, such that the
conditions (19) and (21) of Theorem 1, that is
at([x(1)]) < V(x, i) < ax(x(1)]), Vie S, (30)
V(x,i) < pV(x.j), Vi,j€S, (31)
and
LV(x,0) = LV(x, D)+ qiV(x,)) < BiV(x,i) (32)
jes
are satisfied, then system (29) is stochastically asymptotically
stable in the large.

@ X. Mao, C. Yuan, Stochastic differential equations with
Markov switching, Imperial College Press, 2006.



It follows from (32) and (21) that for each i € S,

LV(x, i)
=LV(x,)) = > qV(x.))
jes
< BV Z q;V(x,))
jeS
= (Bi + qi(p — 1)) V(x,1). (33)

Take A\; = ;i + gji(n — 1). Then, we have \; < 0 and

LV(x,i) < NV(x,i). (34)



Let

0 pi2 -+ pin
0o ...
p_ P.21 - P2n (35)
[o/RERE 0

be the one-step transition probability matrix of the embedded
Markov chain. Since r(t) is a Markov process, for each i € S,
we assume that 7; follows exponential distribution with
parameter 6;. Then, it follows from (28) that

0; = —C],',',\V/I' eS. (36)



A direct calculation shows that

p>  E(eMT)

jes

_ —Qii y
= 12 gP

jES

_ Z H‘q/l| pi
il (e — 1) — Bi + gl

Qi
= E < E =1, 37
N|q/l| @pu P = (37)

jeS jES

which implies that the condition (22) of our Theorem is satisfied.



@ If we remove the condition (31), this corollary has the same
sufficient conditions of Theorem 5.37 in Mao and Yuan
(2006), which discussed the stochastically asymptotically
stable in the large for the Markov switched stochastic
system (29).

@ (32) is one of the most important sufficient conditions of
Theorem 5.37 in Mao and Yuan (2006), which implicitly
quantifies the trade-off between the rates of Markov
process and the rates of decreasing of the Lyapunov
functions.

@ (40) indicates that the condition (32) is more strict that the
condition (22) of our Theorem. But our Theorem requires
that the functions V(x, /), i € S satisfies the condition(22).
Therefore, our Theorem partly generalizes the Theorem
5.37 in Mao and Yuan (2006).



Corollary 2. ( Theorem 3.1 of Systems & Control Letters (2012) )

Assume that there exist functions V € C?(R" x S; RT), and real
numbers > 1, A > 0, such that the conditions (19), (21) of our
Theorem, and

LV(x,i) < =AV(x,i), Vi€ S, (38)
A+q

< — 39

p 7 (39)

are satisfied, where g = max{qj : i,j € S}, and
q = max{|qj| : i € S}, then system (29) is stochastically
asymptotically stable in the large.

@ F. Zhu, Z. Han, J. Zhang, Stability analysis of stochastic
differential equations with markovian switching,
Systems & Control Letters, 61(12)(2012)1209-1214.



A direct calculation shows that

p>  E(eMT)

jes

_ —Qii y
= 12 gP

jES

_ Z H‘q/l| pi
il (e — 1) — Bi + gl

Qi
= E < E =1, 40
N|q/l| @pu P = 40)

jeS jES

which implies that the condition (22) of our Theorem is satisfied.



@ In Theorem 3.1 of Systems & Control Letters (2012), the
conditions (38) and (39) state that if each subsystem is
stable and the switching takes place sufficiently slowly, the
whole systems is stochastically asymptotically stable in the
large.

@ In our Theorem, if some subsystems are unstable, the
whole system can still be stochastically asymptotically
stable in the large under the conditions (20) and (22).

@ The inequality (40) implies that the conditions (38) and (39)
are more strict than the conditions (20) and (22) in our
Theorem. Therefore, our Theorem generalizes Theorem
3.1 of Systems & Control Letters (2012).



An example

Let B(t) be a scalar Brownian motion and r(t) be a
semi-Markov process taking values in S = {1,2,3}. Consider
the following semi-Markov switched stochastic system:

dx(t) = f(x(t), r(t))dt + g(x(t), r())dB(t),
with the corresponding coefficients f and g:
f(x,1) = (=5x1 + X2, (X1 + X2) sinx; — 6x2) ",

g(x,1) = (x1 cos xo, %), (41)
1 1

f(x,2) = (§X1 — Xo, X1 + §X2)T,

g(X72) = (X'I SinX27X2)T7 (42)

1 1
f(x,3) = (ZX1 — 2Xo, X1 + ZXQ)T,

9(x,3) = (\1@)(1 cos xz, V2x)". (43)



The simulation result of state trajectory of subsystem 1 is shown
in Fig.(a).

Fig.(a) shows that subsystem 1 is stable.
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(a) Computer simulation of the paths of zi(t)
and z2(t) for the subsystem (66) using the Euler-
Maruyama method with step size At = 0.01 and
initial values z:(0) = 3 and z2(0) = —1.



The simulation result of state trajectory of subsystem 2

Fig.(b) shows that subsystem 2 is unstable.
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(b) Computer simulation of the paths of z(t)
and z2(t) for the subsystem (67) using the Euler-
Maruyama method with step size At = 0.01 and
initial values z1(0) = 3 and z2(0) = —1.



The simulation result of state trajectory of subsystem 3

Fig.(c) shows that subsystem 3 is unstable.

x10°
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(¢) Computer simulation of the paths of wi(t)
and 2 (t) for the subsystem (68) using the Euler-
Maruyama method with step size At = 0.01 and
initial values £1(0) = 3 and z2(0) = —1.



The whole system is stable

It is easy to check that our conditions are satisfied and the
whole system is stable.

(1%, (0., 00)

0 05 1 1.5 2 25 3

(e) Computer simulation of the paths of r(t), z1(t)
and z2(t) for the system (8) using the Euler-
Maruyama method with step size At = 0.001 and
initial values £1(0) = 3.5 and z2(0) = —3.2.



A comparison

A direct calculation, we have

P11 P12 P13
Ah)y= | 4po1 4pon  4pos |,
2hps1  2hpsp  2hps3

which yields that the transition rates from subsystem 3 to
subsystems 1 and 2 are unbounded.

Huang and Shi (2013) gave the approach for studying the
stabili- ty of semi-Markov jump linear system, but they required
to constrain the transition rates within a finite interval.

@ Huang J. and Shi Y., Stochastic stability and robust
stabilization of semi-markov jump linear systems,
International Journal of Robust and Nonlinear Control,
23(18)(2013) 2028-2043.
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